SBX2 1 Nitrate in Drinking Water: UC Davis "N Tracking Analysis" to Estimate Potential Groundwater N Loading

University of California, Davis

ThHarter@ucdavis.edu

All technical details are documented in Viers et al. (2012), http://groundwaternitrate.ucdavis.edu/files/139110.pdf

Purpose and Expected Outcome

SBX2 1 (Perata, 2008) – Water Code Section 83002.5: "To improve understanding of the causes of groundwater contamination [...], the State Water Resources Control Board [...] shall develop pilot projects in the Tulare Lake Basin and the Salinas Valley that focus on nitrate contamination and do all of the following:

- (a) (1) [...] utilizing existing data [...] along with the collection of new information as needed [...]:
- O (A) **Identify sources, by category of discharger**, of groundwater contamination due to nitrates in the pilot project basins.
- O (B) **Estimate proportionate contributions to groundwater** contamination by source and category of discharger.

 (emphasis added for clarity)

[....]"

Data Elements 1 – N Leaching Estimation

- 1. Some N Leaching to groundwater was estimated using literature-derived or permit-specified leaching values (spatial scale identified in parentheses):
 - Lawns (available maps of urban area boundaries)
 - Golf courses (parcels in DWR landuse survey)
 - Urban wastewater system leaching (available maps of urban area boundaries)
 - Wastewater treatment plants, food processors (location from discharge permit records)
 - Septic systems (estimated density/location based on US census, 1990)
 - Dairy lagoons and corrals (digitized/mapped from aerial photos)
 - Alfalfa (leguminous crop) (parcels in DWR landuse survey)
- 2. Farmland N leaching to groundwater (except alfalfa) was estimated by N mass balance (by individual parcels in DWR landuse survey):

N leached to groundwater =

N inputs to farmland *MINUS* N outputs from farmland root zone (that is: N outputs other than N leached to groundwater)

Data Elements 2 – Potential Farmland N Inputs

- Synthetic fertilizer N
- Wastewater treatment plant / food processor effluent N
- Biosolids N
- Dairy manure N (on dairy-farm or exported)
- Atmospheric deposition N
- Irrigation water N

Data Elements 3: Potential Farmland N Outputs

- Atmospheric losses N (ammonia volatilization, denitrification)
- Harvested N
- Surface runoff N
- Groundwater leaching N (estimated)
- Storage changes in perennial crops/root zone N: we assumed to be negligible due to long-term averaging of N fluxes, recycling of plant residues, and lack of significant, wide-spread build-up of organic matter across the project area soils over the past decades.

Explaining the Mass Balance Approach to Estimate N Leaching to Groundwater

Mass balance requires that:

Synthetic fertilizer N

+
Wastewater effluent N

+
Biosolids N

+
Dairy manure N

+
Atmospheric deposition N

+
Irrigation water N

Atmospheric losses N

+
Harvested N

+
Surface runoff N

+
Leaching N to groundwater

+
Storage Change in N in root zone

Explaining the Mass Balance Approach to Estimate N Leaching to Groundwater

After setting "storage change in N" to zero and rearranging the mass balance equation, we obtain the following formula to estimate N leaching to groundwater:

Leaching N to groundwater

=

Synthetic fertilizer N

+
Wastewater effluent N

+
Biosolids N

+
Dairy manure N

+
Atmospheric deposition N

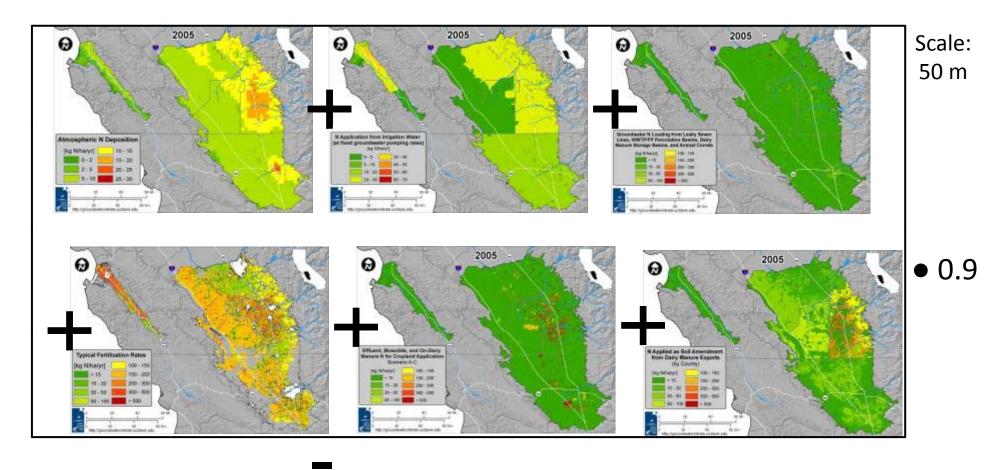
+
Irrigation water N

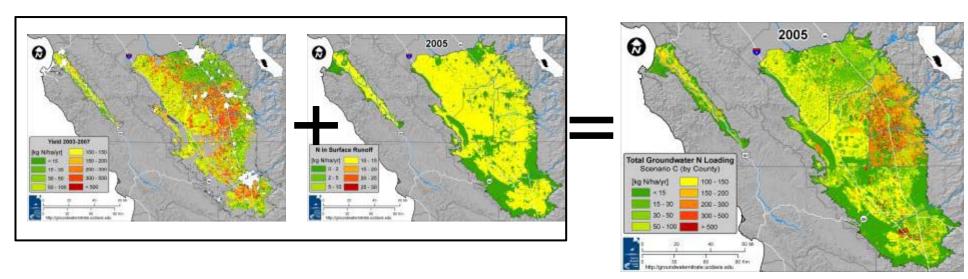
Atmospheric losses N
+
Harvested N
+
Surface runoff N

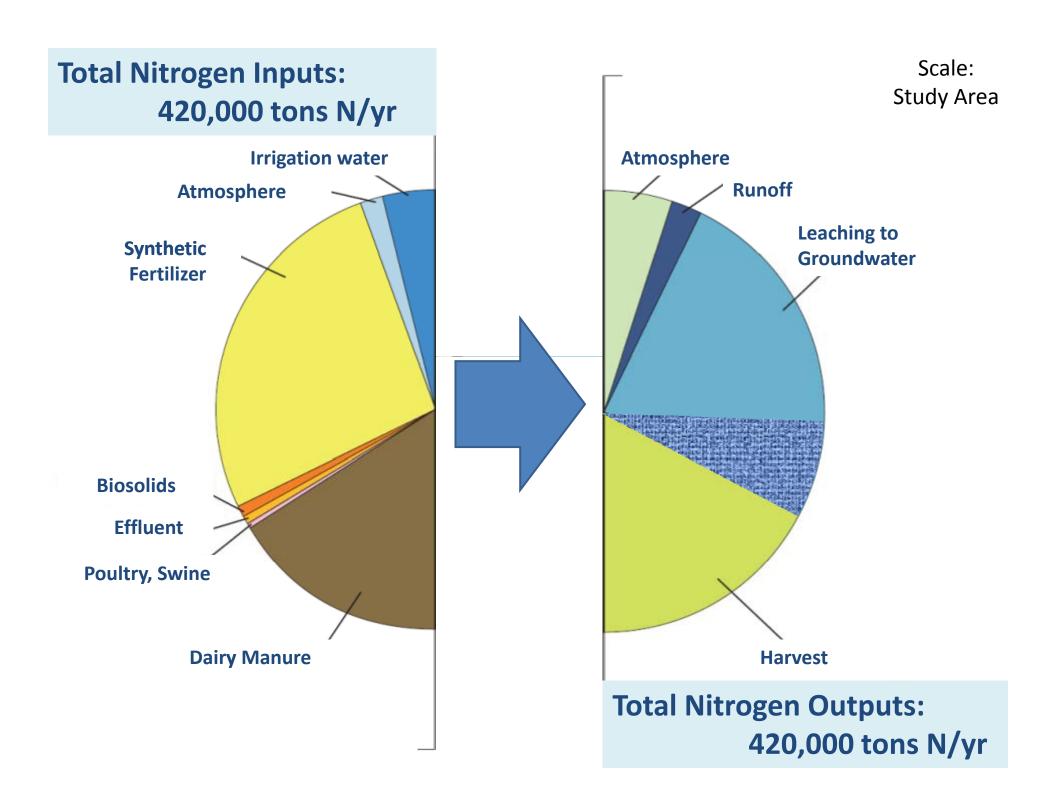
Spatial Scale: Resolution of Available Data

- Many different spatial scales examples:
 - Aerial N deposition: modeled for California at a model grid resolution scale of several miles
 - Wastewater treatment plant: very specific N data, local maps
 - Nitrate in irrigation water: average (one number) for each groundwater subbasin
 - N application and N harvest: by crop type (58 crop types; no distinction by soil, farm, ownership, irrigation type, location etc.)
 - Atmospheric losses of N from root zone: 10% of total N application (uniform across study area)
 - Landuse
 - DWR landuse maps: high resolution (landuse parcels, meter scale accuracy)
 - County Agricultural Commissioner reports: county total landuse acreages

Spatial Scale: Assessment/Analysis


- N Mass Balance / Estimation of Nitrate Loading to
 Groundwater was performed at 4 different scales (resolution):
 - 50 m x 50 m grid cells for spatial mapping ("pixels")
 - Discharger category totals and averages
 - County totals and averages (Fresno, Kern, Kings, Monterey, Tulare)
 - Study area totals and averages (Tulare Lake Basin & Salinas Valley)

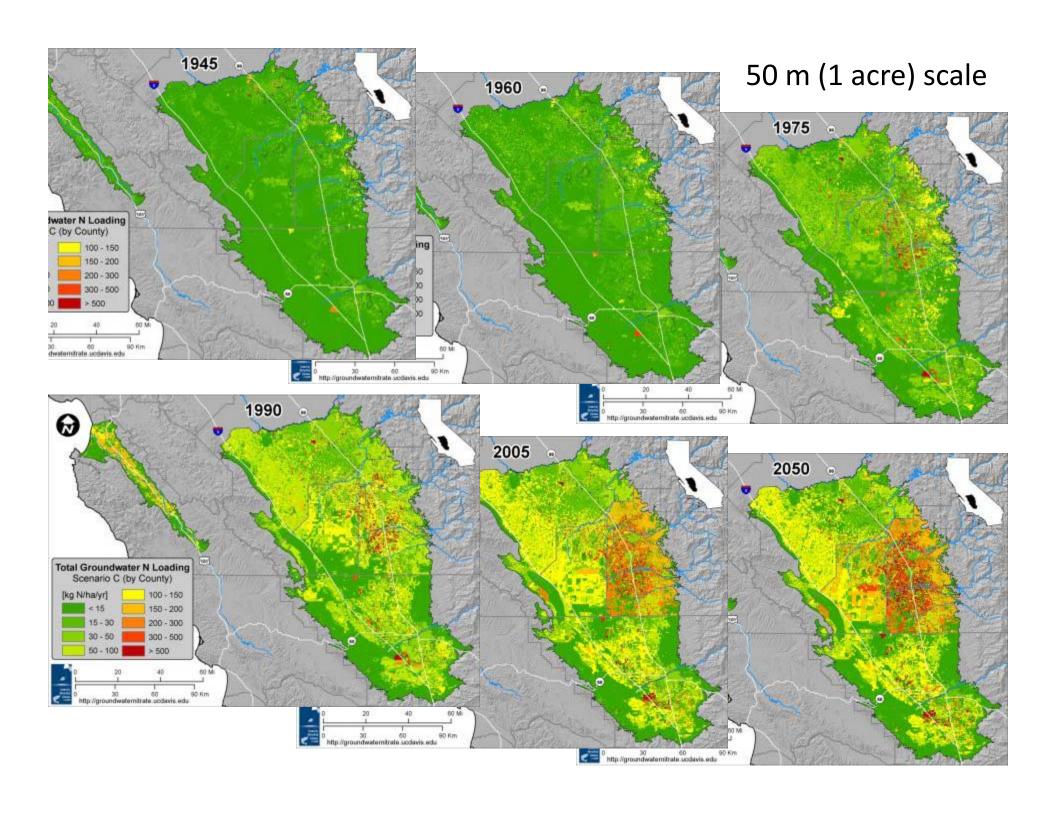

The next slide shows, in map form, the mass balance procedure used to estimate groundwater N loading. Please note that


- Storage change of N in the root zone is assumed to zero.
- The atmospheric loss N output is assumed to be 10% of all N inputs. Hence, it is accounted for by multiplying the sum of all N inputs with 0.9 before subtracting the two other outputs (harvest and runoff).
- The spatial resolution of the maps is 50 m x 50 m pixels (about 1 acre). The mass balance was computed separately for each pixel.

The second slide (after the next) shows the mass balance equation at a different spatial (resolution) scale: The pie-chart represents N fluxes aggregated over the entire study area.

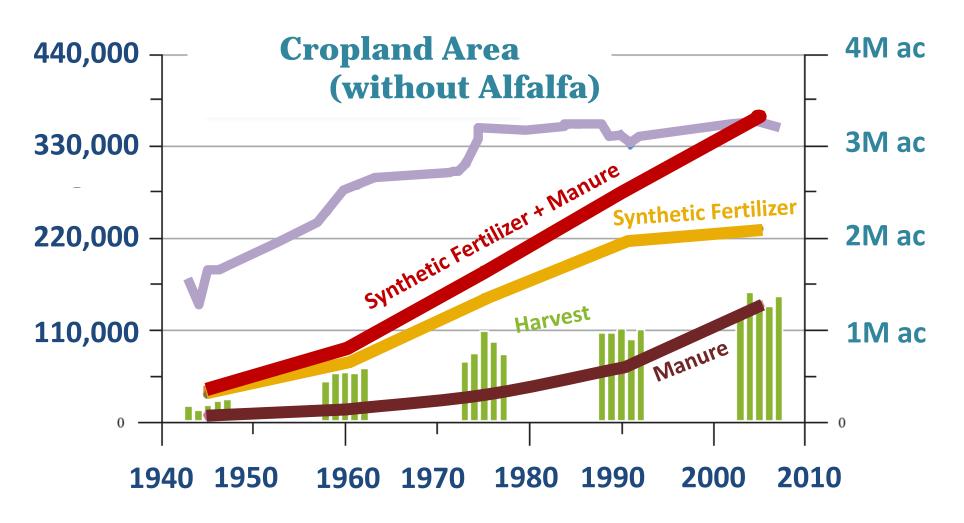
- Left half = N inputs
- Right half = N outputs

Temporal Resolution


 Annual nitrogen fluxes, which are averaged over fiveyear periods:

```
• 1943-1947 => "1945" period
```

The next slide shows, in map form, the temporal evolution of N leaching to groundwater. The spatial resolution of these maps is 50 m x 50 m pixels (about 1 acre).


The second slide (after the next) shows the temporal evolution of four elements of the mass balance equation in aggregated form for the entire study area:

- Synthetic N inputs
- Dairy manure N inputs
- Harvested N outputs
- also shown: Total acreage harvested

tons N/yr

Cropland Area

Reporting Mechanisms

All data collected from existing sources

Benefits

- Provides scientifically best estimate of "proportionate contribution to groundwater contamination by source and by discharger category" (SBX2 1), GIVEN available data, funding, and scope/purpose of the study
- Identifies long-term trends
- Provides overall magnitude of N fluxes at crop category / county / study area level
- Shows patterns of spatial distribution of potential groundwater nitrate loading

Challenges in Applying the Approach to Field / Farm / Township Scale

- Estimates are uncertain for a specific field/farm due to variability in soils/irrigation/farm practices (no available data)
- Atmospheric losses (volatilization, denitrification) variable, few specific measurements available (here: 10% of total land applied nitrogen, appropriate at county scale)
- Harvested N based on reported county average crop yields per acre
 (county ag commissioner) and USDA estimates of moisture and nitrogen
 content per yield unit. No crop/farm/field specific data available.
- Synthetic fertilizer N use based on crop-specific surveys by USDA, UC Davis. No crop/farm/field specific data available.
- Short-term N storage changes in the root-zone and in perennials not included.